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Kekul~ valence-bond structures of catacondensed conjugated hydrocarbons with no, one, 
two and three branched cycles (which may be 4-, 6- and/or 8-membered) are used to generate 
highly regular vertex-transitive graphs through the application of an equivalence relation to the 
sextet of n-electrons in the terminal rings of the hydrocarbon. The partitioning of a given set 
of Kekul~ structures allows the study of certain novel combinatorial aspects of Kekul6 counts. 
The graph- generating character reported here is closely related to the recent work of Randir, 
Woodworth, Kleiner and Hosoya. 

1. Introduction 

In a recent development Randia et al. [1] described the generation of highly sym- 
metric vertex-transitive graphs using binary permutation matrices as generators. 
Successive multiplications of such matrices generate other symmetric matrices (of 
the same dimension); each new matrix represents a new vertex in the graph to be 
constructed. In fig. 1 the method of Randia et al. [1] is illustrated on (two forms of) 
the cube. The labeling of the vertices of the cube corresponds to the matrices shown 
in fig. 2: each vertex v~ corresponds to the permutation matrix At while each edge 
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Fig. 1. Two forms of the cube, Gs. The labels of the vertices are identified in fig. 2 and in fig. 4. 
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v~vj is "weighted", so to speak, by the matrix Aq. The multiplication is convention- 
ally designed in the following way: 

Vi I Ai 

Aq 

Vj Aj : AijAi 

(i °° o° 1 oo o 1 o° 1 / / i  °1 o°° 1 o° i) (OOl o°°° 1 oo 1 o i) 
AI A2 A3 

(!OOoooOl ool ol) (iOOooo1 Ol !) (OlOoooool o Ol i) 
A4 A5 A6 

(°1°i) (10011 (°1°i) 1 0 0 0 1 0 1 0 0 

0 0 1 0 0 1 0 0 1 

0 0 0 0 0 0 0 0 0 

A7 A8 A12 -- A34 --- A56 = A78 

o o o 1 

0 1 0 0 0 1 

0 0 0 0 0 0 

0 0 1 1 0 0 

A23 ----- A14 = A58 ----- A67 A28 = A37 = A46 = AI5 

Fig. 2. Binary permutation matrices used by Randi6 et al. [1] to generate the cube. The matrix Ai iden- 
tifies the vertex vi of the cube shown in fig. 1 while matrix A/j identifies the edge lq of the cube. 
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2. Kekul6  structures as graph generators  

In the early stages of chemical graph theory Cvetkovi6 et  al. [2] rigorously 
proved that Kekul6 structures are indeed permutations (of double bonds). This clas- 
sical result suggests the use of Kekul~ structures as graph generators in place of per- 
mutation matrices as demonstrated in ref. [1]. First we state some definitions: In 
the molecular graph of a polycyclic conjugated hydrocarbon, a ring (which may be 
4-, 6- and/or  8-membered) is called terminal if it contains only one edge common 
to two rings. Analogously a conjugated circuit [3] (of Randi6) which is fully con- 
tained in a terminal ring will be called a terminal conjugated circuit. Then we define 
two Kekul6 structures as adjacent (and hence may be thought of as connected)/f  
and only if they give, when superimposed, a Clar formula [4] with only one terminal 
circle. 

2.1. UNBRANCHED HYDROCARBONS 

A branched hexagon (or cycle of arbitrary size) in a conjugated polycyclic hydro- 
carbon is defined [5] as being surrounded by three neighboring cycles. If no 
branched cycles exist in a hydrocarbon, it is called unbranched. In fig. 3 we illustrate 
the generation of a square, which we call here G4, starting with a Kekul~ structure 
of an unbranched benzocyclobutadiene system. In an unbranched system there are 
only two terminal rings and therefore 22 = 4 possible ways of permuting the term- 
inal conjugated circuits. When the individual Kekul6 structures are replaced by ver- 
tices, then connecting any two vertices corresponding to two adjacent Kekul6 
structures results in a square. Formally one can define a Kekul6 adjacency matrix, 
K as a square symmetric binary matrix, the elements of which, kij, are given by 

1 if k i u k j = ~ T ,  
K--- (k/j) = 0 otherwise, (1) 

where ki LJ kj is superposition of Kekul6 structures ki and kj and ~-r is a Clar for- 
mula with only one terminal circle. Equation (1) is illustrated in fig. 3. 

2.2. BRANCHED CATACONDENSED HYDROCARBONS WITH ONE BRANCHED 
CENTER 

In this case there will be three terminal rings with 23 = 8 possible combinations 
of terminal conjugated circuits. In fig. 4 we show the nine Kekul6 structures of a 
branched cyclobutadiene hydrocarbon. The first 8 Kekul6 structures lead to a cube, 
Gs, when subjected to eq. (1). The labels given to the individual Kekul6 structures 
correspond to the labels of the vertices of (two forms of) the cube shown in fig. 1. 
Observe that any two Kekul6 structures with labels i and i + 1, where i = [1,7], are 
adjacent (i.e. connected). In addition, the following pairs are also adjacent as can 
be tested using eq. (1): {3, 7}, { 1,5}, and {2, 8}. 
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Fig. 3. Generation of the square, (74, by application of eq. (1), the definition of adjacency among a 
set of Kekul~ structures. Observe that while kl is adjacent to k2, it is not adjacent to k4. 
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Fig. 4. The nine Kekul6 structures of  a naphthobicyclobutadiene. The designation a and 3 are 
explained for 6- and 4-membered rings. The letter a designates vertical double bonds while 3 desig- 
nates horizontal double bonds. The first 8 Kekul6 structures lead to a cube when eq. (1) is applied with 
labels corresponding to labels of vertices of the cube in fig. 1. The last Kekul6 structure, 9, is not adja- 

cent to any of  the structures 1-8. 
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Fig. 5. Sixteen of  the Kekul6 structures of tetrabenzophenanthrene. The c~ and/3 designate the permu- 
tation of double bonds in hexagons as envisaged in fig. 4. When the definition of  adjacency, eq. (1), 
is applied to the set a 4-dimensional cube, G16 results, see fig. 6. The labels of the vertices of GI6 corre- 

spond to the labels of the Kekul6 structures. 
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2.3. BRANCHED SYSTEMS WITH TWO BRANCHED CENTERS, I.E., FOUR 

T E R M I N A L  RINGS 

Figure 5 shows 16 (of the 41) Kekul~ structures of a tetrabenzophenanthrene. 
In this case eq. (1) leads to a four-dimensional cube, G16, shown in fig. 6. The labels 
of the Kekul6 structures in fig. 5 correspond to the labels of the G16 graph drawn 
(in two forms) in fig. 6. It is worth mentioning that the graph G16 results in counting 
certain organometallic six-coordinate complexes [6]. 

3. Discussion 

Two Kekul6 structures ki and kj (both belonging to a particular hydrocarbon) 
are adjacent if a terminal conjugated circuit in ki is related to the corresponding 
terminal circuit in kj by mirror-reflection or rotation by 60 °. Then one can define an 
operator l which rotates the n-electrons of a terminal ring (which may be 4-, 6- 
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Fig. 6. The four-dimensional cube, GI 6, generated through the application of  eq. (1) on the 16 Kekul6 
structures shown in fig. 5. 
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and/or  8-membered) by 60 ° to generate an adjacent Kekul6 structure. Let 
kl, k2, k3 and/ca be four Kekul6 structures of a given polycyclic conjugated hydro- 
carbon, so that 

lkl = k2 ,  (3) 

lk2=k3, (4) 

lk3 =k4,  (5) 
then k2-k4 form G4. The following result applies to the adjacency relation defined 
by eq. (1). 

PROPOSITION 

The definition of adjacency given by eq. (1) is an equivalence relation [7], i.e., par- 
titions a set of Kekul6 structures into a set of connected graphs when each Kekul6 
structure is replaced by a vertex and then any two vertices which correspond to two 
adjacent Kekul6 structures are connected. 

Proof 

The reflexive part is obvious while the symmetric part is clear from eqs. (3)-(5). 
Finally, the transitive property can be envisaged in the following way: 

lkr = ks; lks = k t - - ,  

12kr = l ( l k r )  = [ks = k t .  (6) 

The above equivalence relation, _/, is demonstrated in fig. 7, where eq. (1) parti- 
tions the (14) Kekul6 structures of a pentalene system into a cube, a square and a 
path on two vertices; (72 (usually called K2 graph [8]) depending on the type of 
Kekul6 structure one starts the graph-generation with: type 1 (fig. 7) possesses 
three terminal conjugated circuits and thus generates Gs, i.e. a cube, type 2 with 
only two terminal circuits can only form a G4 (square) while type 3 containing only 
one terminal circuit can only be linked to other Kekul6 structures in pairs and 
thus form G2. 

4. On Kekul~ counts  

Kekul6 structures which are formally nothing else but permutations [2] of a spe- 
cial type can be made to generate vertex-transitive regular graphs by applying an 
equivalence relation to the terminal conjugated circuits of a given ki and applying 
eq. (1). The result here is perhaps a special case of the more general work by Randi6 
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Fig. 7. Pictorial illustration of the equivalence relation / on the Kekul6 structures of a benzopentalene 
derivative. The space ~ is a "Kekul~ space" containing all 14 Kekul6 valence-bond structures of the 
hydrocarbon. The equivalence relation partitions this set into a cube (from type 1), a square (from 

type 2) and K2 graph (from type 3). 

et al. [1] using permutation matrices as generators. This result is perhaps worth 
knowing: aside from the graph construction problem which is itself important, the 
proposition reached here leads to a novel approach to enumeration of K (the 
KekuA6 count); an already "exhausted" topic with an overwhelming number of 
papers [9] but which still attracts the attention of many workers in mathematical 
chemistry. 

As an illustration we consider a benzenoid hydrocarbon which contains five 
terminal rings. There are 5 types of Kekul6 structures for this hydrocarbon, viz., 
Type 1: One sextet of n-electrons in each of the terminal 5 hexagons (fig. 8). This 

type leads to G32, a 5-dimensional cube shown in fig. 9. 
Type 2: Four terminal conjugated circuits (arrangements 2 and 3 in fig. 8). Each 

arrangement leads to a G16. 

Type 3: Three terminal conjugated circuits: arrangements 4 ,  5 and 6 ,  each leads 
to a Gs. 
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Fig. 8. The five types of Kekul6 structures of a benzenoid hydrocarbon which contains 5 terminal 
hexagons. Type 1 generates G32 (five-dimensional cube shown in fig. 9), type 2 generates (716, type 3 
leads to a cube, type 4 produces a square, and finally type 5 generates G2. This partitioning allows the 

computation of K as described by eq. (7). 

Type 4: Two terminal conjugated circuits: arrangement 7 leading to a G4. 
Type 5: Only one terminal circuit which generates G2, cf. arrangement 8 ,  fig. 8. 

Then 

K = 3 2 +  (2)(16) + (3)(8) + 4 + 2  

= 94, in agreement with the reported value [10]. (7) 
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Fig. 9. The five-dimensional cube, G32, produced when the equivalence relation is applied to the sub- 
set of Kekul6 structures which contains 5 terminalconjugated circuits of type R1. 

5. On  fractal benzenoids  [1 la,b] 

Recently Klein et al. [1 la] studied several classes of deterministically fractal ben- 
zenoid systems. We choose in this paper the trigonal triphenylenoid family and 
focus on the member which represents the third stage in this family, cf. fig. 10. We 
use our approach here to find its K value. There are four types of double bond per- 
mutations, namely: 
1. R1 R1R1. Three conjugated circuits containing 6 n-electrons each: one circuit in 

each of the three terminal rings. This configuration generates 2 6 cubes and hence 
contributes 8 x 2 6 to the value of K. The factor of 2 6 is the Kekul6 count of 6 iso- 
lated benzene rings (heavily outlined in fig. 10). 

2. RIRI. Two terminal R1 circuits, the third cycle being blocked to the equivalence 
relation. This particular arrangement leads to 3 x 2 4 squares: The factor of 3 ac- 
counts for symmetry and 2 4 = K value of the 4 isolated benzene rings (boldly 
outlined in fig. 10). 

3. R1. Only one R1 terminal circuit leading to 3 x 22K2( --  G2) graphs. 
4. No terminal Rls. There are two arrangements, each contributing a 1 to the total 

value of K. 
Summing the above contributions leads to the value of K: 
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Fig. 10. The computation of  the number of Kekul6 structures of  a hydrocarbon which has trigonal 
fractility [11 a], eq. (8). The four types of valence-bond structures are drawn. 
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K = 8 × 26 + 3  x 4 × 2 4 + 3  x 2 x 22+ 1 + 1 = 730 (8) 

as computed by Klein et al. [ 11 a] considering the trigonal fractility of this tripheny- 
lenoid hydrocarbon. 

6. Conclusion 

The topic of graph generation is still a virgin and worthy one in mathematical 
applications. In this work regular vertex- transitive graphs which may be of interest 
in chemistry are generated by the application of an equivalence relation on the 
terminal conjugated circuits in Kekul6 structures. Some of the regular graphs 
synthesized here have chemical existence, namely: 

i) G2 : represents compounds such as ethylene. 
ii) G4 : represents "hypothetical" cyclobutadiene. 
iii)G8 : represents cubane which was already prepared sometime ago [12]. Also 

some transition metal clusters [ 13] such as Nis (PPh) 6 (CO) s. 
iv) G16 : is a 4-dimensional cube used in counting organometallic six-coordinate 

complexes [6]. 

It is important to mention the pioneering work of Balaban [14], who seems to 
have initiated this subject. 
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