Kekulé structures as graph generators

Sherif El-Basil
Faculty of Pharmacy, Kasr El-Aini St., Cairo 11562, Egypt

Received 19 August 1992; revised 30 December 1992

Kekulé valence-bond structures of catacondensed conjugated hydrocarbons with no, one, two and three branched cycles (which may be 4 -, 6 - and/or 8 -membered) are used to generate highly regular vertex-transitive graphs through the application of an equivalence relation to the sextet of π-electrons in the terminal rings of the hydrocarbon. The partitioning of a given set of Kekulé structures allows the study of certain novel combinatorial aspects of Kekulé counts. The graph-generating character reported here is closely related to the recent work of Randić, Woodworth, Kleiner and Hosoya.

1. Introduction

In a recent development Randić et al. [1] described the generation of highly symmetric vertex-transitive graphs using binary permutation matrices as generators. Successive multiplications of such matrices generate other symmetric matrices (of the same dimension); each new matrix represents a new vertex in the graph to be constructed. In fig. 1 the method of Randić et al. [1] is illustrated on (two forms of) the cube. The labeling of the vertices of the cube corresponds to the matrices shown in fig. 2: each vertex v_{i} corresponds to the permutation matrix \mathbf{A}_{i} while each edge

Fig. 1. Two forms of the cube, G_{8}. The labels of the vertices are identified in fig. 2 and in fig. 4.
$v_{i} v_{j}$ is "weighted", so to speak, by the matrix $\mathbf{A}_{i j}$. The multiplication is conventionally designed in the following way:

$$
\begin{aligned}
& \left.v_{i}\right\} \begin{array}{l}
\mathbf{A}_{\mathbf{i}} \\
\mathbf{A}_{i j} \\
\mathbf{A}_{j}=\mathbf{A}_{i j} \mathbf{A}_{i}
\end{array} \\
& \left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& \mathbf{A}_{1} \\
& \mathbf{A}_{2} \\
& \left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \\
& \mathrm{A}_{4} \\
& \mathbf{A}_{5} \\
& \mathbf{A}_{6} \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \mathbf{A}_{7} \quad \mathbf{A}_{8} \quad \mathbf{A}_{12}=\mathbf{A}_{34}=\mathbf{A}_{56}=\mathbf{A}_{78} \\
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \\
& \mathbf{A}_{23}=\mathbf{A}_{14}=\mathbf{A}_{58}=\mathbf{A}_{67} \quad \mathbf{A}_{28}=\mathbf{A}_{37}=\mathbf{A}_{46}=\mathbf{A}_{15}
\end{aligned}
$$

Fig. 2. Binary permutation matrices used by Randić et al. [1] to generate the cube. The matrix \mathbf{A}_{i} identifies the vertex v_{i} of the cube shown in fig. 1 while matrix $\mathbf{A}_{i j}$ identifies the edge $l_{i j}$ of the cube.

2. Kekulé structures as graph generators

In the early stages of chemical graph theory Cvetkovic et al. [2] rigorously proved that Kekulé structures are indeed permutations (of double bonds). This classical result suggests the use of Kekule structures as graph generators in place of permutation matrices as demonstrated in ref. [1]. First we state some definitions: In the molecular graph of a polycyclic conjugated hydrocarbon, a ring (which may be $4-, 6-$ and/or 8 -membered) is called terminal if it contains only one edge common to two rings. Analogously a conjugated circuit [3] (of Randic) which is fully contained in a terminal ring will be called a terminal conjugated circuit. Then we define two Kekulé structures as adjacent (and hence may be thought of as connected) if and only if they give, when superimposed, a Clar formula [4] with only one terminal circle.

2.1. UNBRANCHED HYDROCARBONS

A branched hexagon (or cycle of arbitrary size) in a conjugated polycyclic hydrocarbon is defined [5] as being surrounded by three neighboring cycles. If no branched cycles exist in a hydrocarbon, it is called unbranched. In fig. 3 we illustrate the generation of a square, which we call here G_{4}, starting with a Kekulé structure of an unbranched benzocyclobutadiene system. In an unbranched system there are only two terminal rings and therefore $2^{2}=4$ possible ways of permuting the terminal conjugated circuits. When the individual Kekulé structures are replaced by vertices, then connecting any two vertices corresponding to two adjacent Kekulé structures results in a square. Formally one can define a Kekulé adjacency matrix, \mathbf{K} as a square symmetric binary matrix, the elements of which, $k_{i j}$, are given by

$$
\mathbf{K}=\left(k_{i j}\right)= \begin{cases}1 & \text { if } k_{i} \cup k_{j}=\zeta_{\mathrm{T}} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

where $k_{i} \cup k_{j}$ is superposition of Kekule structures k_{i} and k_{j} and ζ_{T} is a Clar formula with only one terminal circle. Equation (1) is illustrated in fig. 3.

2.2. BRANCHED CATACONDENSED HYDROCARBONS WITH ONE BRANCHED CENTER

In this case there will be three terminal rings with $2^{3}=8$ possible combinations of terminal conjugated circuits. In fig. 4 we show the nine Kekule structures of a branched cyclobutadiene hydrocarbon. The first 8 Kekule structures lead to a cube, G_{8}, when subjected to eq. (1). The labels given to the individual Kekule structures correspond to the labels of the vertices of (two forms of) the cube shown in fig. 1. Observe that any two Kekule structures with labels i and $i+1$, where $i=[1,7]$, are adjacent (i.e. connected). In addition, the following pairs are also adjacent as can be tested using eq. (1): $\{3,7\},\{1,5\}$, and $\{2,8\}$.

Fig. 3. Generation of the square, G_{4}, by application of eq. (1), the definition of adjacency among a set of Kekulé structures. Observe that while k_{1} is adjacent to k_{2}, it is not adjacent to k_{4}.

$\stackrel{1}{\sim}$

4

7

2

3

5

8

9

Fig. 4. The nine Kekulé structures of a naphthobicyclobutadiene. The designation α and β are explained for 6 - and 4 -membered rings. The letter α designates vertical double bonds while β designates horizontal double bonds. The first 8 Kekulé structures lead to a cube when eq. (1) is applied with labels corresponding to labels of vertices of the cube in fig. 1. The last Kekulé structure, 9 , is not adjacent to any of the structures 1-8.

10

11

12

13

14

15

16

Fig. 5. Sixteen of the Kekule structures of tetrabenzophenanthrene. The α and β designate the permutation of double bonds in hexagons as envisaged in fig. 4. When the definition of adjacency, eq. (1), is applied to the set a 4-dimensional cube, G_{16} results, see fig. 6. The labels of the vertices of G_{16} correspond to the labels of the Kekulé structures.

2.3. BRANCHED SYSTEMS WITH TWO BRANCHED CENTERS, I.E., FOUR TERMINAL RINGS

Figure 5 shows 16 (of the 41) Kekule structures of a tetrabenzophenanthrene. In this case eq. (1) leads to a four-dimensional cube, G_{16}, shown in fig. 6. The labels of the Kekule structures in fig. 5 correspond to the labels of the G_{16} graph drawn (in two forms) in fig. 6 . It is worth mentioning that the graph G_{16} results in counting certain organometallic six-coordinate complexes [6].

3. Discussion

Two Kekulé structures k_{i} and k_{j} (both belonging to a particular hydrocarbon) are adjacent if a terminal conjugated circuit in k_{i} is related to the corresponding terminal circuit in k_{j} by mirror-reflection or rotation by 60°. Then one can define an operator l which rotates the π-electrons of a terminal ring (which may be 4 -, 6 -

Fig. 6. The four-dimensional cube, G_{16}, generated through the application of eq. (1) on the 16 Kekulé structures shown in fig. 5 .
and/or 8 -membered) by 60° to generate an adjacent Kekulé structure. Let k_{1}, k_{2}, k_{3} and k_{4} be four Kekulé structures of a given polycyclic conjugated hydrocarbon, so that

$$
\begin{align*}
& l k_{1}=k_{2}, \tag{3}\\
& l k_{2}=k_{3}, \tag{4}\\
& l k_{3}=k_{4}, \tag{5}
\end{align*}
$$

then $k_{2}-k_{4}$ form G_{4}. The following result applies to the adjacency relation defined byeq. (1).

PROPOSITION

The definition of adjacency given by eq. (1) is an equivalence relation [7], i.e., partitions a set of Kekulé structures into a set of connected graphs when each Kekulé structure is replaced by a vertex and then any two vertices which correspond to two adjacent Kekulé structures are connected.

Proof

The reflexive part is obvious while the symmetric part is clear from eqs. (3)-(5). Finally, the transitive property can be envisaged in the following way:

$$
\begin{align*}
& l k_{\mathrm{r}}=k_{\mathrm{s}} ; \quad l k_{\mathrm{s}}=k_{\mathrm{t}} \rightarrow \\
& l^{2} k_{\mathrm{r}}=l\left(l k_{\mathrm{r}}\right)=l k_{\mathrm{s}}=k_{\mathrm{t}} \tag{6}
\end{align*}
$$

The above equivalence relation, \underline{l}, is demonstrated in fig. 7 , where eq. (1) partitions the (14) Kekulé structures of a pentalene system into a cube, a square and a path on two vertices; G_{2} (usually called K_{2} graph [8]) depending on the type of Kekulé structure one starts the graph-generation with: type 1 (fig. 7) possesses three terminal conjugated circuits and thus generates G_{8}, i.e. a cube, type 2 with only two terminal circuits can only form a G_{4} (square) while type 3 containing only one terminal circuit can only be linked to other Kekulé structures in pairs and thus form G_{2}.

4. On Kekulé counts

Kekulé structures which are formally nothing else but permutations [2] of a special type can be made to generate vertex-transitive regular graphs by applying an equivalence relation to the terminal conjugated circuits of a given k_{i} and applying eq. (1). The result here is perhaps a special case of the more general work by Randic

1

2

$\stackrel{x}{\underline{\ell}}$

Fig. 7. Pictorial illustration of the equivalence relation $\underline{\underline{l}}$ on the Kekule structures of a benzopentalene derivative. The space \mathcal{K} is a 'Kekulé space"' containing all 14 Kekulé valence-bond structures of the hydrocarbon. The equivalence relation partitions this set into a cube (from type 1), a square (from type 2) and K_{2} graph (from type 3).
et al. [1] using permutation matrices as generators. This result is perhaps worth knowing: aside from the graph construction problem which is itself important, the proposition reached here leads to a novel approach to enumeration of K (the Kekulé count); an already "exhausted" topic with an overwhelming number of papers [9] but which still attracts the attention of many workers in mathematical chemistry.

As an illustration we consider a benzenoid hydrocarbon which contains five terminal rings. There are 5 types of Kekulé structures for this hydrocarbon, viz.,
Type 1: One sextet of π-electrons in each of the terminal 5 hexagons (fig. 8). This type leads to G_{32}, a 5-dimensional cube shown in fig. 9 .
Type 2: Four terminal conjugated circuits (arrangements 2 and 3 in fig. 8). Each arrangement leads to a G_{16}.
Type 3: Three terminal conjugated circuits: arrangements $\underset{\sim}{4}, \underset{\sim}{5}$ and $\underset{\sim}{6}$, each leads to G_{8}.

7

8

Fig. 8. The five types of Kekule structures of a benzenoid hydrocarbon which contains 5 terminal hexagons. Type 1 generates G_{32} (five-dimensional cube shown in fig. 9), type 2 generates G_{16}, type 3 leads to a cube, type 4 produces a square, and finally type 5 generates G_{2}. This partitioning allows the computation of K as described by eq. (7).

Type 4: Two terminal conjugated circuits: arrangement 7 leading to a G_{4}. Type 5: Only one terminal circuit which generates G_{2}, cf. arrangement $\underset{\sim}{8}$, fig. 8 .

Then

$$
\begin{align*}
K & =32+(2)(16)+(3)(8)+4+2 \\
& =94, \quad \text { in agreement with the reported value }[10] \tag{7}
\end{align*}
$$

Fig. 9. The five-dimensional cube, G_{32}, produced when the equivalence relation is applied to the subset of Kekulé structures which contains 5 terminal conjugated circuits of type R_{1}.

5. On fractal benzenoids [11a,b]

Recently Klein et al. [11a] studied several classes of deterministically fractal benzenoid systems. We choose in this paper the trigonal triphenylenoid family and focus on the member which represents the third stage in this family, cf. fig. 10. We use our approach here to find its K value. There are four types of double bond permutations, namely:

1. $R_{1} R_{1} R_{1}$. Three conjugated circuits containing 6π-electrons each: one circuit in each of the three terminal rings. This configuration generates 2^{6} cubes and hence contributes 8×2^{6} to the value of K. The factor of 2^{6} is the Kekulé count of 6 isolated benzene rings (heavily outlined in fig. 10).
2. $R_{1} R_{1}$. Two terminal R_{1} circuits, the third cycle being blocked to the equivalence relation. This particular arrangement leads to 3×2^{4} squares: The factor of $3 \mathrm{ac}-$ counts for symmetry and $2^{4}=K$ value of the 4 isolated benzene rings (boldly outlined in fig. 10).
3. R_{1}. Only one R_{1} terminal circuit leading to $3 \times 2^{2} K_{2}\left(\equiv G_{2}\right)$ graphs.
4. No terminal $R_{1} \mathrm{~s}$. There are two arrangements, each contributing a 1 to the total value of K.
Summing the above contributions leads to the value of K :

$\rightarrow G_{8}^{2^{6}}$

$\rightarrow 3 G_{2}^{2^{2}}$

$\rightarrow G$,

Fig. 10. The computation of the number of Kekulé structures of a hydrocarbon which has trigonal fractility [11a], eq. (8). The four types of valence-bond structures are drawn.

$$
\begin{equation*}
K=8 \times 2^{6}+3 \times 4 \times 2^{4}+3 \times 2 \times 2^{2}+1+1=730 \tag{8}
\end{equation*}
$$

as computed by Klein et al. [11a] considering the trigonal fractility of this triphenylenoid hydrocarbon.

6. Conclusion

The topic of graph generation is still a virgin and worthy one in mathematical applications. In this work regular vertex-transitive graphs which may be of interest in chemistry are generated by the application of an equivalence relation on the terminal conjugated circuits in Kekule structures. Some of the regular graphs synthesized here have chemical existence, namely:
i) G_{2} : represents compounds such as ethylene.
ii) G_{4} : represents "hypothetical" cyclobutadiene.
iii) G_{8} : represents cubane which was already prepared sometime ago [12]. Also some transition metal clusters [13] such as $\mathrm{Ni}_{8}(\mathrm{PPh})_{6}(\mathrm{CO})_{8}$.
iv) G_{16} : is a 4-dimensional cube used in counting organometallic six-coordinate complexes [6].

It is important to mention the pioneering work of Balaban [14], who seems to have initiated this subject.

Acknowledgements

The author thanks Professors D.J. Klein, S.J. Cyvin, H. Hosoya and N. Trinajstić for illuminating comments. Interesting reprints sent by Professor M. Randić are greatly appreciated.

References

[1] M. Randić, W.L. Woodworth, A.F. Kleiner and H. Hosoya, J. Comput. Chem. 8 (1987) 522.
[2] D. Cvetković, I. Gutman and N. Trinajstić, J. Chem. Phys. 61 (1974) 2700.
[3] M. Randić, Chem. Phys. Lett. 38 (1976) 68; J. Am. Chem. Soc. 99 (1977) 444; Int. J. Quant. Chem. 17 (1980) 549.
[4] I. Gutman, Bull. Chim. Soc. Beograd 47 (1982) 453.
[5] (a) I. Gutman, Theor. Chim. Acta 45 (1977) 309;
(b) S. El-Basil, Bull. Chem. Soc. Jpn. 56 (1983) 3152;
(c) S.J. Cyvin and I. Gutman, Lecture Notes in Chemistry 46 (1988) 16.
[6] M. Gielen, in: Chemical Applications of Graph Theory, ed. A.T. Balaban (Academic Press, 1976).
[7] C.L. Liu, Elements of Discrete Mathematics (McGraw-Hill, 1977) p. 73. For chemical and physical applications of equivalence relations, see S. El-Basil and M. Randić, Adv. Quant. Chem. 24 (1992) 239.
[8] F. Harary, Graph Theory (Addison- Wesley, Reading, MA, 1969).
[9] See, e.g., ref. [5c]. A chapter on the various methods that can be used for counting Kekule structures is found in the revised book: N. Trinajstić, Chemical Graph Theory (CRC, Boca Raton, FL, 1992).
[10] J.V. Knop, W.R. Müller, K. Szymanski and N. Trinajstić, Computer Generation of Certain Classes of Molecules (SKTH/Kemija U industriji Zagreb, 1985) Compound No 9.0.498.
[11] (a) D.J. Klein, M.J. Cravey and G.E. Hite, Polycyclic Aromatic Compounds 2 (1991) 163;
(b)D. Plavšić, N. Trinajstić and D.J. Klein, Croat. Chem. Acta 65 (1992) 279.
[12] I.L. Finar, Organic Chemistry, Vol. 2 (Longmans, 1968) p. 166.
[13] D.M.P. Mingos and D.J. Wales, Introduction to Cluster Chemistry (Prentice-Hall, 1990) p. 76.
[14] See, e.g., A.T. Balaban, Rev. Roumaine Chim. 33 (1988) 699.

